Sniff rhythm-paced fast and slow gamma-oscillations in the olfactory bulb: relation to tufted and mitral cells and behavioral states.
نویسندگان
چکیده
Odor signals are conveyed from the olfactory bulb (OB) to the olfactory cortex by two types of projection neurons, tufted cells and mitral cells, which differ in signal timing and firing frequency in response to odor inhalation. Whereas tufted cells respond with early-onset high-frequency burst discharges starting at the middle of the inhalation phase of sniff, mitral cells show odor responses with later-onset lower-frequency burst discharges. Since odor inhalation induces prominent gamma-oscillations of local field potentials (LFPs) in the OB during the transition period from inhalation to exhalation that accompany synchronized spike discharges of tufted cells and mitral cells, we addressed the question of whether the odor-induced gamma-oscillations encompass two distinct gamma-oscillatory sources, tufted cell and mitral cell subsystems, by simultaneously recording the sniff rhythms and LFPs in the OB of freely behaving rats. We observed that individual sniffs induced nested gamma-oscillations with two distinct parts during the inhalation-exhalation transition period: early-onset fast gamma-oscillations followed by later-onset slow gamma-oscillations. These results suggest that tufted cells carry odor signals with early-onset fast gamma-synchronization at the early phase of sniff, whereas mitral cells send them with later-onset slow gamma-synchronization. We also observed that each sniff typically induced both fast and slow gamma-oscillations during awake, whereas respiration during slow-wave sleep and rapid-eye-movement sleep failed to induce these oscillations. These results suggest that behavioral states regulate the generation of sniff rhythm-paced fast and slow gamma-oscillations in the OB.
منابع مشابه
Sniff Rhythm-paced Fast and Slow Gamma Oscillations in the Olfactory Bulb: Relation to 1 Tufted and Mitral Cells and Behavioral States 2 3
19 20 Odor signals are conveyed from the olfactory bulb (OB) to the olfactory cortex by two 21 types of projection neurons, tufted cells and mitral cells, which differ in signal timing 22 and firing frequency in response to odor inhalation. Whereas tufted cells respond with 23 early-onset high frequency burst discharges starting at the middle of the inhalation 24 phase of sniff, mitral cells sh...
متن کاملOlfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex
The orbitofrontal cortex receives multi-modality sensory inputs, including olfactory input, and is thought to be involved in conscious perception of the olfactory image of objects. Generation of olfactory consciousness may require neuronal circuit mechanisms for the "binding" of distributed neuronal activities, with each constituent neuron representing a specific component of an olfactory perce...
متن کاملThe Relationship between Respiration-Related Membrane Potential Slow Oscillations and Discharge Patterns in Mitral/Tufted Cells: What Are the Rules?
BACKGROUND A slow respiration-related rhythm strongly shapes the activity of the olfactory bulb. This rhythm appears as a slow oscillation that is detectable in the membrane potential, the respiration-related spike discharge of the mitral/tufted cells and the bulbar local field potential. Here, we investigated the rules that govern the manifestation of membrane potential slow oscillations (MPSO...
متن کاملTwo Distinct Channels of Olfactory Bulb Output
Rhythmic neural activity is a hallmark of brain function, used ubiquitously to structure neural information. In mammalian olfaction, repetitive sniffing sets the principal rhythm but little is known about its role in sensory coding. Here, we show that mitral and tufted cells, the two main classes of olfactory bulb projection neurons, tightly lock to this rhythm, but to opposing phases of the sn...
متن کاملHigh-frequency oscillations are not necessary for simple olfactory discriminations in young rats.
Individual olfactory bulb mitral/tufted cells respond preferentially to groups of molecularly similar odorants. Bulbar interneurons such as periglomerular and granule cells are thought to influence mitral/tufted odorant receptive fields through mechanisms such as lateral inhibition. The mitralgranule cell circuit is also important in the generation of the odor-evoked fast oscillations seen in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 110 7 شماره
صفحات -
تاریخ انتشار 2013